

Comparative Emotion

Evolutionarily conserved role of oxytocin in social fear contagion in zebrafish

Ibukun Akinrinade1,2, Kyriacos Kareklas1,2, Magda C. Teles1, Thais K. Reis1, Michael Glikberg2, Giovanni Petr3,4, Gil Levkowitz5,6, Rui F. Oliveira1,6,7

Emotional contagion is the most ancestral form of empathy. We tested to what extent the proximate mechanisms of emotional contagion are evolutionarily conserved by assessing the role of oxytocin, known to regulate empathic behaviors in mammals, in social fear contagion in zebrafish. Using oxytocin and oxytocin receptor mutants, we show that oxytocin is both necessary and sufficient for observer zebrafish to imitate the distressed behavior of conspecific demonstrators. The brain regions associated with emotional contagion in zebrafish are homologous to those involved in the same process in rodents (e.g., striatum, lateral septum), receiving emotional contagion are evolutionarily conserved by assessing the role of oxytocin, known to regulate empathic behaviors in mammals, in social fear contagion in zebrafish.

1Integrative Behavioral Biology Lab, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal. 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel. 3SI Foundation and IS Global Science Foundation, Torino 10126, Italy. 4CENTI Institute, Torino 10138, Italy. 5Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel. 6ISPA-Instituto Universitário, Lisboa 1149-041, Portugal. 7Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisboa 1400-038, Portugal.

Corresponding author. Email: ruiol@ispa.pt

†These authors contributed equally to this work.

‡Present address: Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary Alberta T2N 1N4, Canada.

To characterize the neural circuits associated with emotional contagion in zebrafish we examined the expression of a neuronal activity marker, phospho-S6 ribosomal protein (pS6), in a set of forebrain and midbrain areas involved in social decision-making across vertebrates [i.e., social decision-making network (15)]. Significant changes were identified in two of these areas, the ventral (Vv) and central nucleus (Vc) of the ventral telencephalic area (Fig. 2A). The Vv is a putative homolog of the mammalian lateral septum and the Vc of the mammalian striatum (15). Notably, the expression, recognition, and sharing of emotions in humans also relies on the regulation of activity in these forebrain areas by oxytocin, even if higher order empathic functions are dependent on neocortical circuits (16–19).

In zebrafish, we find that both areas exhibit a decrease in activity associated with the expression of freezing behavior in observer wild types and an increase in activity with the lack of response in oxtr mutants (Fig. 2B). This suggests that zebrafish distress behavior during contagion is mediated by decreases in inhibitory cell activity and that overactivation of these cells in mutants prevents the expression of this behavior. To test this hypothesis, we used a double reporter line for both excitatory (glutamate: vglut2/dsRed) and inhibitory (γ-amino butyric acid, GABA: gadtb/GFP) neurotransmission (Fig. 2C). Compared with controls, during contagion the Vv indeed exhibits greater activity in inhibitory cells ($\chi^2_{13} = 5.09, p = 0.024$), but the Vc instead exhibits increased activity in excitatory cells ($\chi^2_{13} = 9.90, p = 0.002$). Notably, the oxytocinergic modulation of GABAergic inhibition is also
Fig 1. Oxytocin effects on the social transmission of distress.

(A) Schematic and schedule (HAB, habituation; ON, overnight) of the social contagion paradigm. Droplets represent administration of vehicle (blue) and alarm substance (AS, red) to control and experimental groups. (B to K) (Left) temporal dynamics of freezing and erratic movement response across treatments for mutant oxt^{−/−}, oxt^{+/−}, oxtr^{−/−}, and oxtrl^{−/−} fish, compared with WT controls. Shaded area indicates time before AS or vehicle administration. (Right) percentage of freezing and erratic movement (mean ± SEM) after vehicle and AS administration. [Two-way analysis of variance (ANOVA) with post hoc Welch’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001.]
Fig 2. Oxytocin receptor deletion alters nodal neuronal activation. (A) Schedule of behavioral assay and immuno-staining; anatomical localization of the two brain areas responding to fear contagion: the central nucleus (Vc) and the ventral nucleus of the ventral telencephalon (Vv), with representative hemispheric sections identified by DAPI (cyan) and patterns of neuronal activity shown by pS6 (magenta) through immunostaining. (B) Quantification of the density (cells per 5000 µm) of pS6 positive cells in each brain area, Vc and Vv; panels show representative examples (left to right: WT control, WT alarm, mutant control, mutant alarm; scale = 20 µm). (C) Quantified activity in cells (pS6 and DAPI) identified as either excitatory (glutaminergic: vglut2a) or inhibitory (GABAergic: gadlb) in double reporter lines (vglut2a:dsRed / gadlb: GFP) compared between the observation of control (C) or alarm-response (AS) in demonstrators (linear mixed model, with pS6 as covariate; Cohen's d quantifies effect size), with representative microscopy examples shown in panels. [Results are shown as mean ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001] (D) Representative example of sagittal brain slice (confocal maximum intensity z-stack) showing immunostained oxt positive neuronal fibers (yellow) projecting to the Vv in the subpallium of adult zebrafish with TH cell groups (pink) also projecting to the Vv.

exhibited in the lateral septum of mice during social fear transmission (17).

The zebrafish Vv conserves the role of the mammalian lateral septum as a functional connectivity area between the social behavior and mesolimbic system (15). Thus, the decreasing inhibition when distress is observed enables otherwise depressed signals during control conditions to be relayed between areas of the network. By contrast, the Vc conserves the role of the striatum as part of the mesolimbic reward pathway for downstream other-oriented motor and motivational controls (16, 18), which explains the excitatory increases similar to those noted in parts of the striatum in mice (19). Because the proportion of active cells during social fear contagion that were either inhibitory or excitatory was a minority (Vc 31.26% and Vv 15.86%), the overall decreased activity may relate to other oxytocin-induced changes in local cells, likely due to shifts in connectivity across the network. Oxytocin regulation of these ventral forebrain areas relies on projections from oxytocin neurons in the pre-optic area (Fig. 2D), and is confirmed by the expression of both zebrafish oxytocin receptors in these areas (oxtr, oxtrl; fig. S1), which is also in agreement with the pattern of brain distribution of oxtr in other teleost fish (20). Notably, both receptors are also expressed across most nodes of the social decision-making network, but the expression of the primary receptor (oxtr) is distinctly greater and more widespread (fig. S1). Thus, we examined the effect of oxtr expression on patterns of functional connectivity across the social decision-making network.

Oxytocin modulates functional connectivity across brain regions in response to social contagion

To study functional connectivity, we constructed networks representing coactivation patterns during social fear contagion and control treatments, for both wild types and oxtr mutants, with positive and negative correlations between nodes indicating excitatory and inhibitory patterns respectively. Although functional distributions differ between wild types and mutants under both control and treatment conditions, average inhibition and excitation notably differ only under the fear contagion treatment (fig. S2). Networks were tested for both excitatory and inhibitory distributions across genotypes and treatments, and for computed average levels of each [probability in sample space, p(ω)]. Under control conditions wild types and mutants show differences in the network distribution (excitation: KS = 0.23, P < 10^-3; inhibition: KS = 0.55, P < 10^-6), but negligible differences in average signals (only inhibition: U = 3492, P < 10^-5, Cohen’s d = 0.18). Under treatment, oxtr mutants exhibited both higher average excitation (U = 5744, P < 10^-6, Cohen’s d = 0.67) and inhibition (U = 1972, P < 10^-6, Cohen’s d = 0.68), as well as greater differences in distribution (excitation: KS = 0.49, P < 10^-6; inhibition: KS = 0.73, P < 10^-6). Overall, the absence of emotional contagion in oxtr mutants was paralleled by a segregated pattern of functional connectivity (excitatory: KS = 0.38, P < 10^-6; inhibitory: KS = 0.50, P < 10^-4) with significantly greater average excitation in their brain network (U = 5680, P < 10^-6, Cohen’s d = 0.49) than wild types displaying the socially transmitted distress behavior. In line with our findings in the reporter line, the Vv of the wild type loses all its inhibitory connectivity during treatment compared with the control, but in mutants inhibitory connectivity is partially retained—namely to the anterior tuberal nucleus. By contrast, the Vc of wild types maintains inhibitory connectivity during contagion, shifting only in target nodes and reducing strong neighboring connections, which may explain the overall reduced activity. We also confirm that it exhibits excitatory links, most of which are to non-neighboring nodes and which do not appear in oxtr mutants. These include the habenula (HAV), the lateral hypothalamic nucleus, and the posterior dorsal telencephalic area, which are involved in fear and alarm responses (6, 21). Node centrality also radically shifted in ranking between the brain networks of wild types and oxtr mutants, and with fear contagion compared with the control (fig. S3 and table S1). In turn, only a single preserved submodule (at z > 3, P < 0.01) was shared between wild types and oxtr mutants under the fear contagion treatment, and it constitutes the dorsal and ventral habenula, the posterior pre-optic area and the magnocellular preoptic nucleus. Considering the implications of the habenular nuclei in zebrafish fear responses and that the pre-optic area responds to the alarm substance (6, 21), this submodule is likely involved in processing fear stimulation in both groups. Notably, although the submodule is isolated in oxtr mutants, in wild types it is integrated in a larger module together with ventral and dorsal areas of the telencephalon, and the ventral zone of the periventricular nucleus. This indicates that oxytocin drives greater functional integration when animals are exposed to distressed conspecifics.

Oxytocin regulates the recognition of emotion-like states needed for social fear contagion

The observed social transmission of fear in zebrafish can be regarded simply as behavior contagion based on motor imitation or as emotional contagion, which requires recognition of the demonstrator’s state (i.e., emotion) and which triggers an automatic representation of the same state in the observer, causing an equivalent expression of behavior (22). Although zebrafish match both the behavior and cortisol levels of distressed individuals (4), this may be due to either recognizing and sharing the internal state of others or because the behavior of others signals local danger (e.g., predators) (14), which triggers proportional physiological and behavioral changes. Therefore, we decided to test state recognition explicitly by separating (in time) the moment the observer sees the distressed conspecific (observation phase) from a second moment (test phase), when the observer must discriminate between the demonstrator previously observed in distress and the individual that was relaxed (i.e., only swimming). If observers can make this discrimination, it means that when they expressed alarm behavior in response to the observed distress behavior of conspecifics (observation phase), they were not merely responding with motor imitation but were able to encode information on the behavioral state of demonstrators, which they subsequently used to discriminate between the two demonstrators when they are in a similar behavioral state (test phase). To this end, observers of ax, oxtr, and oxtrl mutants and their respective WT controls were first exposed to two simultaneous prerecorded video playback of the same demonstrator in conflicting states: neutral (swimming) and periodic distress (three bouts of erratic movement and freezing). Observers were then exposed to two videos both showing the demonstrator in the neutral state.
in which recognition was tested through local preferences based on the previously observed conflicting states (Fig. 3A).

During observation attention was measured by (B to E) the absolute heading toward the stimulus video (0 to 180°; one-sample t-tests, \(\mu \neq 90° \)) and (F to I) temporal changes in the proportion time erratic and freezing following analogous behavior in the stimulus video, which were compared between genotype and treatment (linear mixed models, full factorial). During tests (J to M) differences in latency to first approach the stimulus compared with the control location were tested (Welch’s two-sample t-tests; effect-size comparisons: z tests, \(d_1 \neq d_2, |z| \geq 1.96 \) at \(\alpha = 0.05 \) two-sided) and (N to Q) local preference scores, calculated from cumulative durations, were also compared (one-sample t-tests, \(\mu \neq 0 \); genotypic comparisons: Welch’s two-sample t-tests; genotype times treatment: two-way ANOVA with post hoc Fisher’s LSD). Heat maps are representative examples with the least deviation from the mean. [NS \(P > 0.05 \), *\(P < 0.05 \), **\(P < 0.01 \), ***\(P < 0.001 \)].

Fig. 3. Content validity of fear transmission by state recognition. (A) Video playback tests enabled the controlled assessment of stimulus versus state recognition across two experimental phases: a 5-min observation of two conflicting videos presenting the same demonstrator in either a neutral state (control) or periodically distressed (stimulus) and a 10-min local preference test while both videos displayed the demonstrator in a neutral state. During observation attention was measured by (B to E) the absolute heading toward the stimulus video (0 to 180°; one-sample t-tests, \(\mu \neq 90° \)) and (F to I) temporal changes in the proportion time erratic and freezing following analogous behavior in the stimulus video, which were compared between genotype and treatment (linear mixed models, full factorial). During tests (J to M) differences in latency to first approach the stimulus compared with the control location were tested (Welch’s two-sample t-tests; effect-size comparisons: z tests, \(d_1 \neq d_2, |z| \geq 1.96 \) at \(\alpha = 0.05 \) two-sided) and (N to Q) local preference scores, calculated from cumulative durations, were also compared (one-sample t-tests, \(\mu \neq 0 \); genotypic comparisons: Welch’s two-sample t-tests; genotype times treatment: two-way ANOVA with post hoc Fisher’s LSD). Heat maps are representative examples with the least deviation from the mean. [NS \(P > 0.05 \), *\(P < 0.05 \), **\(P < 0.01 \), ***\(P < 0.001 \)].

During observation, fish oriented toward erratic movement and freezing and thus attention shifted to the distressed behavior and not the level of movement (Fig. S4). Notably, orientation preferences were not different between any of the oxytocin mutants and WT controls (Fig. 3, B to E). By contrast, the wild types replicated the distress behavior of the demonstrators whereas the oxytocin mutants failed to do so. However, the administration of oxytocin to the ligand mutant (\(oxt \)) rescued the distress contagion (Fig. 3, F to I, and Fig. S5). This replicated the results of the live demonstrator experiment regarding the necessary and sufficient role of oxytocin and further shows that attention is not moderating these effects. Notably, during the test phase wild type observers were motivated to approach and preferred being near the previously distressed demonstrator, whereas oxytocin mutants did not express a motivation to approach.
Moreover, because distressed behavior in zebrafish signals local predation risk (14), our findings also show that oxytocin promotes interaction with distressed others despite heightened local risk. Such other-oriented acts that involve individual costs and benefits for others are typically referred to as prosociality, which is often referred to as prosociality, which is indispensable for the validation of a phylogenetically distant model of emotional contagion.

Discussion

The oxytocin regulation of social transmission of fear in zebrafish described here supports its evolutionary conserved role in emotional contagion, given its similar effects in mammals, where exogenous administration of oxytocin increases observational fear responses (10, 11). Furthermore, in both zebrafish and rodents, oxytocin also regulates emotion recognition (25, 27), which is the cognitive basis for emotional contagion. Therefore, it is plausible that oxytocin has been recruited early in the evolution of nonapeptides to regulate ancestral empathic behaviors in group living species, and that it has been evolutionarily coopted to regulate more complex empathic behaviors, such as consolation and social affect, in species with more complex cognitive abilities. However, to what extent the social contagion of fear observed in zebrafish and in mammals is homologous, or represents a case of convergent evolution, remains an open question. Although at this stage the homology hypothesis is more parsimonious as it requires fewer evolutionary transitions for the observed similarities, more comparative research across different relevant species is needed to disentangle these two hypotheses. From a human translational research perspective our results contribute to the validation of a phylogenetically distant model of emotional contagion.

REFERENCES AND NOTES

23. V. Ferretti, F. Papaleo, Genes Brain Behav. 18, e12544 (2019).

ACKNOWLEDGMENTS

We thank all members of G. Levkowitz’s and R. Oliveira’s laboratories for fruitful discussions; Instituto Gulbenkian de Ciência (IGC) Advanced Imaging Facility for technical support; IGC’s Fish Facility for animal care and valuable advice; IGC’s Histopathology Facility for technical support and valuable advice; Funding: This work was funded by a research grant from Fundação para a Ciência e a Tecnologia (FCT, Portugal; ref. PTDC/BIA-COM/0202/2017) awarded to R.F.O.; I.A. was supported by a PhD Fellowship from FCT (PD/BD/00605/2014); K.K. and M.C.T. were supported by postdoc. FCT fellowship (2012.01699/CECIND and PTDC/BIA-COM/31956/2017, respectively). The G.L. laboratory is supported by Israel Science Foundation (151/16), United States-Israel Binational Science Foundation (2017255), Nella and Leon Benoziyo Center for Neurological Diseases, Richard F. Goodman Yale/Weizmann Exchange Program and Estate of Emile Mirman. G.L. is an incumbent of the Elias Sourasky Professors Chair. The Advanced Imaging Facility of IGC is supported by the grant PRF-POCH-01-0145-FEADER-022122, and the J.P. Felkrt et al. Science 351, 379–382 (2016). K.K. is an incumbent of the Fish Facility is part of Congento, which is supported by grant LPSBOA-01-0145-FEADER-022170; both of these grants are cofinanced by the Lisbon Regional Operational Programme (Lisboa 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) and FCT (Portugal). Author contributions: Conceptualization: R.F.O., I.A., and K.K. Funding acquisition: R.F.O., I.A., and G.L. Investigation: I.A., K.K., M.C.T., T.K.R., M.G., and G.P. Methodology: G.L., G.P., and R.F.O. Visualization: I.A., K.K., M.C.T., and G.P. Writing – original draft: R.F.O., I.A., and K.K. Writing – review and editing: I.A., K.K., M.C.T., T.K.R., M.G., G.P., G.L., and R.F.O. I.A. and K.K. contributed equally to this study, and first authorship was decided alphabetically. Competing interests: The authors declare no competing interests. Data and materials availability: All data are available in the manuscript or the supplementary material. License information: Copyright © 2023 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.sciencemag.org/about/science-licensure-journal-article-use

SUPPLEMENTARY MATERIALS

science.org/doi/10.1126/science.abq5158

Materials and Methods
Figs. S1 to S6
Tables S1 and S2
Data S1
References (31–46)

View/request a protocol for this paper from

Submitted 14 April 2022; accepted 6 February 2023
10.1126/science.abq5158
Evolutionarily conserved role of oxytocin in social fear contagion in zebrafish

Ibukun Akinrinade, Kyriacos Kareklas, Magda C. Teles, Thais K. Reis, Michael Gliksberg, Giovanni Petri, Gil Levkowitz, and Rui F. Oliveira

Science, 379 (6638), .
DOI: 10.1126/science.abq5158

Fundamentals of empathy

Emotional contagion, in which individuals display fear or distress behaviors in response to observations of the same in another, is considered a basal form of empathy and is known to occur in fishes. Akinrinade *et al.* have shown that the neuropeptide oxytocin is responsible for these behaviors in zebrafish, as it is in mammals (see the Perspective by DeAngelis and Hofmann). They also found that the same regions of the brain are involved in zebrafish and in mammals. Such homologies in emotional response mechanisms across fishes and mammals suggest that this most basal form of empathy could have evolved many, many millions of years ago.—SNV

View the article online
https://www.science.org/doi/10.1126/science.abq5158
Permissions
https://www.science.org/help/reprints-and-permissions